A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization
نویسندگان
چکیده
This paper proposes a new mating scheme for evolutionary multiobjective optimization (EMO), which simultaneously improves the convergence speed to the Pareto-front and the diversity of solutions. The proposed mating scheme is a two-stage selection mechanism. In the first stage, standard fitness-based selection is iterated for selecting a pre-specified number of candidate solutions from the current population. In the second stage, similarity-based tournament selection is used for choosing a pair of parents among the candidate solutions selected in the first stage. For maintaining the diversity of solutions, selection probabilities of parents are biased toward extreme solutions that are different from prototypical (i.e., average) solutions. At the same time, our mating scheme uses a mechanism where similar parents are more likely to be chosen for improving the convergence speed to the Paretofront. Through computational experiments on multi-objective knapsack problems, it is shown that the performance of recently proposed well-known EMO algorithms (SPEA and NSGA-II) can be improved by our mating scheme.
منابع مشابه
An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization
We have already proposed a similarity-based mating scheme to recombine extreme and similar parents for evolutionary multiobjective optimization. In this paper, we examine the effect of the similarity-based mating scheme on the performance of evolutionary multiobjective optimization (EMO) algorithms. First we examine which is better between recombining similar or dissimilar parents. Next we exam...
متن کاملMating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization
The aim of this paper is to clearly demonstrate the potential ability of a similarity-based mating scheme to dynamically control the balance between the diversity of solutions and the convergence to the Pareto front in evolutionary multiobjective optimization. The similarity-based mating scheme chooses two parents in the following manner. For choosing one parent (say Parent A), first a pre-spec...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملMultiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mid-eighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety, of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific ...
متن کاملAdaptive and Assortative Mating Scheme for Evolutionary Multi-Objective Algorithms
We are interested in the role of restricted mating schemes in the context of evolutionary multi-objective algorithms. In this paper, we propose an adaptive assortative mating scheme that uses similarity in the decision space (genotypic assortative mating) and adapts the mating pressure as the search progresses. We show that this mechanism improves the performance of the simple evolutionary algo...
متن کامل